
I
i
I
I

I
I
I

l
I

I
l

I

I
I

I
I

l
I

I

1_87- ,?,4896

MEASURING SOFTWARE TECHNOLOGY

Wo Wo Agresti, Do N. Card, V. E. Church, and G. Page

Computer Sciences Corporation

System Sciences Division

8728 Colesville Road

Silver Spring, Maryland 20910

F. E. McGarry

National Aeronautics and Space Administration

Goddard Space Flight Center
Code 582

Greenbelt, Maryland 20771

ABSTRACT

Results are reported from a series of investigations into the effec-

tiveness of various methods and tools used in a software production

environment. The basis for the analysis is a project data base,

built through extensive data collection and process instrumentation.

The project profiles become an organizational memory, serving as a

reference point for an active program of measurement and experimenta-

tion on software technology.

INTRODUCTION

Many proposals aimed at improving the software development process

have emerged during the past several years. Such approaches as

structured design, automated development tools, software metrics,

resource estimation models, and special management techniques have

been directed at building, maintaining, and estimating the software

process and product.

Although the software development community has been presented with

these new tools and methods, it is not clear which of them will prove

effective in particular environments. When this question is ap-

proached from the user's perspective, the issue is to associate with

each programming environment a set of enabling conditions and "win"

predicates to signal when methods can be applied and which ones will

improve performance. LacKing such guidelines, organizations are left

to introduce new procedures with little understanding of their likely

effect.

Assessing methods and tools for potential application is a central

activity of the Software Engineering Laboratory (SEL) [i, 2]. The

SEL was established in 1977 by the National Aeronautics and Space

,_,,:.__,_ P_,GE E_L.ANI{NOT. F._
2-3

__iI__ENI_JONALLZ BLAN[



Administration (NASA)/Goddard Space Flight Center (GSFC) in conjunc-

tion with Computer Sciences Corporation and the University of

Maryland. The SEL's approach is to understand and measure the soft-

ware development prdcess, measure the effects of new methods through

experimentation, and apply those methods and tools that offer im-

provement. The environment of interest supports flight dynamics ap-

plications at NASA/GSFC. This scientific software consists primarily

of FORTRAN, with some assembler code, and involves interactive

graphics. The average size of a project is 60,000 to 70,000 source

lines of code.

SEL investigations demonstrate the advantages of building and main-

taining an organizational memory on which to base a program of ex-

perimentation and evaluation. Over 4_ projects, involving

1.8 million source lines of code, have been monitored since 1977.

Project data have been collected from five sources:

• Activity and change forms completed by programmers and man-

agers

• Automated computer accounting information

• Automated tools such as code analyzers

• Subjective evaluations by managers

• Personal interviews

The resulting data base contains over 25 megabytes of profile infor-

mation on completed projects.

Some highlights of SEL investigations using the project history data

base are presented here, organized into three sections:

• Programmer Productivity

• Cost Models

• Technology Evaluations

PROGRAMMER PRODUCTIVITY

The least understood element of the software development process is

the behavior of the programmer. One SEL study examined the distri-

bution of programmer time spent on various activities. When specific

dates were used to mark the end of one phase and the beginning of the

next, 22 percent of the totai hours were attributed to the design

phase, with 48 percent for coding, and 30 percent for testing. "How-

ever, if the programmers' completed forms were used to identify ac-

tual time spent on various activities, the breakdown was

2-4

II
il
I
I

I
II
II

I
I

l
I

i
II
I

I
II

II
II



I

i

i

I

l
I
I

I
I

I
l

I

I
I

I
I

I
I

approximately equal for the four categories of designing, coding,

testing, and "other" (activities such as travel, training, and

unknown) [3]. Although an attractive target for raising productivity

was t6 eliminate the "other" category, the SEL found that this was

not easily done.

Regarding individual programmer productivity, the SEL found differ-

ences as great as l0 to i, where productivity was measured in lines

of code per unit of effort [4]. This result was consistent with

similar studies in other organizations [5].

COST MODELS

Cost is often expressed in terms of the effort required to develop

software. In the effort equation,

E = aI b

where E equals effort in staff time and I equals size in lines of

code, some studies reported a value of b greater than one, indicating

that effort must be increased at a higher rate than the increase in

system size. The SEL analysis of projects in its data base did not

support this result, finding instead a nearly linear relationship

between effort and size [6]. This conclusion may be due to the SEL

projects being smaller than those that would require more than a

linear increase in effort.

In a separate study, the SEL used cost data from projects to evaluate

the performance of various resource estimation models. One study,

using a subset of completed projects, compared the predictive ability

of five models: Dory, SEL, PRICE S, Tecolote, and COCOMO [7]. The

objective was to determine which model best characterized the SEL

environment. The results showed that some models worked well on some

projects, but no model emerged as a single source on which to base a

program of estimation [8]. In the SEL environment, cost models have

value as a supplementary tool to flag extreme cases and to reinforce

the estimates of experienced managers.

TECHNOLOGY EVALUATIONS

Several SEL experiments have been conducted to assess the effective-

ness of different process technologies. One study focused on the use

of an independent verification and validation (IV&V) team. The

2-5

I



premise for introducing an IV&V team into the software development

process is that any added cost will be offset by the early discovery

of errors. The expected benefit is a software product of greater

quality and reliability. In experimenting with an IV&V team in the

SEL environment, the benefits were not completely realized [9]. The

record on early error detection was better with IV&V than without it,

but the reliability of the final product was not improved. Also, the

productivity of the development team was comparatively low, due in

part to the necessary interaction with the IV&V team. The conclusion

was that an IV&V team was not effective in the SEL environment, but

may be effective where there are larger projects or higher reli-

ability requirements.

A recent SEL investigation measured the effect of seven specific

techniques on productivity and reliability. From the project data

base, indices were developed to capture the degree of use of quality

assurance procedures, development tools, documentation, structured

code, top-down development, code reading, and chief programmer team

organization. The results showed that the greatest productivity and

reliability improvements due to methodology use lie only in the range

of 15 to 30 percent. Significant factors within this range are the

positive effect of structured code on productivity and the positive

effects of quality assurance, documentation, and code reading on re-

liability [10].

Figure i summarizes the perceived effectiveness of various practices

in the the SEL environment [4]. The placement of the models and

methods is based on the overhead cost of applying the model or method

and the benefit of its use. This summary must be interpreted in the

following context:

• The placement reflects subjective evaluations as well as

experimental results.

• The chart is indicative of experiences in the SEL environ-

ment only.

• The dynamic nature of the situation is not apparent. The

evaluation may reflect on an earlier and less effective ex-

ample of the model or method.

2-6

I

I

i

I
I

I
I

I
I

I
I

I

I
I

I
I

I
I



II
II

l
II
II
I

II

I
I
I

II
I

II

i
I

II
i

e

t,m

U4

0

BENERT _,_._

Figure I. What Has Been Successful in Our Environment?

CONCLUSIONS

The experiences of the SEL demonstrate that statistically valid eval-

uation is possible in the software development environment, but only

if the prerequisite quantitative characterization of the process has

been obtained. Through its program of assessing and applying new

methods and tools, the SEL is actively pursuing the creation of a

more productive software development environment.

2-7

I



REFERENCES

I. V. R. Basili and M. V. Zelkowitz, "Operation of the Software

Engineering Laboratory," Proceedings of the Second U.S. Army/IEEE

Software Life C_cle Management Workshop. New York: Computer

Societies Press, 1978

2. D. N. Card, F. E. McGarry, G. Page, et al., SEL-81-104, The Soft-

war 9 En_ineerin_ Laboratory, Software Engineering Laboratory, 1982

3. E. Chen and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate

Software Engineering Methodologies," Proceedin@s of the Fifth
International Conference on Software Engineering. New York:

Computer Societies Press, 1981

4. F. E. McGarry, "What Have We Learned in the Last Six Years Meas-

uring Software Development Technology," SEL-82-007, Proceedin@s

of the Seventh Annual Software Engineering Workshop, Software

Engineering Laboratory, 1982

5. H. Sackman, W. J. Erikson, and E. E. Grant, "Exploratory Experi-

mental Studies Comparing Online and Offline Program Performance,"

Communications of the ACM, January 1968, vol. 11, no.l, pp. 3-11

6. J. W. Bailey and V. R. Basili, "A Meta-Model for Software Devel-

opment Resource Expenditures," Proceedings of the Fifth Inter-

national Conference on Software Engineering. New York: Computer

Societies Press, 1981

7. IIT Research Institute, Quantitative Software Models, Rome Air

Development Center, New York, 1979

8. J. Cook and F. E. McGarry, SEL-80-007, An Appraisal of Selected

Cost/Resource Estimation Models for Software Systems, Software

Engineering Laboratory, 1980

9. G. Page, "Methodology Evaluation: Effects of Independent Verifi-

cation and Integration on One Class of Application," SEL-81-013,

Proceedings of the Sixth Annual Software En_ineerin@ Workshop,

Software Engineering Laboratory, 1981

i0. D. N. Card, F. E. McGarry, and G. Page, "Evaluating Software

Engineering Methodologies in the SEL" (paper presented at Sixth

Minnowbrook Workshop on Software Performance Evaluation,

Minnowbrook, New York, 1983)

2-8

!

i

I
II
i
I

I

I
I

l
I

I

I
I

I
I
i

I


